
计算概论A—实验班

函数式程序设计
Functional Programming

胡振江，张 伟

北京⼤学 计算机学院
2023年09～12⽉

第5章：List Comprehension

Adapted from Graham’s Lecture slides

主要知识点：
Generators、Guards, String Comprehension

Set Comprehensions
In mathematics, the set comprehension notation
can be used to construct new sets from old sets.

{x2 ∣ x ∈ {1,2,3,4,5}}

List Comprehensions
In Haskell, a similar comprehension notation

can be used to construct new lists from old lists.

[x^2 | x <- [1..5]]

=
[1, 4, 9, 16, 25]

List Comprehensions
✤The expression x <- [1..5] is called a generator, as it

states how to generate values for x.
✤Comprehensions can have multiple generators, separated

by commas. For example:

[(x,y) | x <- [1, 2, 3], y <- [4, 5]]

=
[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

List Comprehensions
[(x,y) | x <- [1, 2, 3], y <- [4, 5]]

=

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

✤Changing the order of the generators changes the order of the
elements in the final list:

[(x,y) | y <- [4, 5], x <- [1, 2, 3]]

=
[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

Dependant Generators
Later generators can depend on the variables

that are introduced by earlier generators.

[(x,y) | x <- [1..3], y <- [x..3]]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Dependant Generators
✤Using a dependant generator we can define the library function

that concatenates a list of lists:

 concat :: [[a]] -> [a]
 concat xss = [x | xs <- xss, x <- xs]

Guards
List comprehensions can use guards

to restrict the values produced by earlier generators.

[x | x <- [1..10], even x]

[2, 4, 6, 8, 10]

Guards
✴Using a guard we can define a function that maps a positive

integer to its list of factors:

 factors :: Int -> [Int]
 factors n = [x | x <- [1..n], mod n x == 0]

✴A positive integer is prime if its only factors are 1 and itself.
Hence, using factors we can define a function that decides if a
number is prime:

 prime :: Int -> Bool
 prime n = factors n == [1,n]

Guards

Guards
✴A positive integer is prime if its only factors are 1 and itself.

Hence, using factors we can define a function that decides if a
number is prime:

 primes :: Int -> [Int]
 primes n = [x | x <- [2..n], prime x]

The Zip Function
✴A useful library function is zip, which maps two lists to a list of

pairs of their corresponding elements.

 zip :: [a] -> [b] -> [(a,b)]
 zip [] _ = []
 zip _ [] = []
 zip (a:as) (b:bs) = (a,b) : zip as bs

The Zip Function
✴Using zip, we can define a function returns the list of all pairs of

adjacent elements from a list:

 pairs :: [a] -> [(a,a)]
 pairs xs = zip xs (tail xs)

The Zip Function
✴Using pairs, we can define a function that decides if the

elements in a list are sorted:

 sorted :: Ord a => [a] -> Bool
 sorted xs = and [x <= y | (x,y) <- pairs xs]

The Zip Function
✴Using zip, we can define a function that returns the list of all

positions of a value in a list:

 positions :: Eq a => a -> [a] -> [Int]
 positions x xs = [i | (x',i) <- zip xs [0..], x == x']

String Comprehensions
✴ A string literal is a sequence of characters enclosed in double quotes.
✴ Internally, strings are represented as lists of characters.

"abc" :: String

=

['a','b','c','d',] :: [Char]

String Comprehensions
✴ Because strings are just special kinds of lists, any polymorphic

function that operates on lists can also be applied to strings.

String Comprehensions
✴ Similarly, list comprehensions can also be used to define functions on

strings, such counting how many times a character occurs in a string.

 count :: Char -> String -> Int
 count x xs = length [x' | x' <- xs, x == x']

凯撒加密问题
‣ To encode a string, Caesar simply replaced each letter in the string

by the letter three places further down in the alphabet, wrapping
around at the end of the alphabet.

加密 / encode
import Data.Char(ord, chr, isLower)

encode :: Int -> String -> String
encode n xs = [shift n x | x <- xs]

shift :: Int -> Char -> Char
shift n c | isLower c = int2let $ mod (let2int c + n) 26
 | otherwise = c

let2int :: Char -> Int
let2int c = ord c - ord 'a'

int2let :: Int -> Char
int2let n = chr $ ord 'a' + n

ord 和 chr 是模块 Data.Char 中定义的函数
‣ ord :: Char -> Int 将字符转换为编码值
‣ chr :: Int -> Char 将编码值转换为字符

解密 / crack
✴ The key to cracking the Caesar cipher is the observation that some

letters are used more frequently than others in English text.
table :: [Float]
table = [8.1, 1.5, 2.8, 4.2, 12.7, 2.2, 2.0, 6.1, 7.0,
 0.2, 0.8, 4.0, 2.4, 6.7, 7.5, 1.9, 0.1, 6.0,
 6.3, 9.0, 2.8, 1.0, 2.4, 0.2, 2.0, 0.1]

解密 / crack
crack :: String -> String
crack xs = encode (-factor) xs
 where
 -- minimum: exported by Prelude
 factor = position (minimum chitab) chitab

 -- 计算每种加密偏移量下的chisqr
 chitab = [chisqr (rotate n table') table | n <- [0..25]]

 -- 计算密⽂中字⺟的出现频率
 table' = freqs xs

freqs :: String -> [Float]

chisqr :: [Float] -> [Float] -> Float

作业

5-1请给出凯撒解密函数的完整定义:

作业

crack :: String -> String

（仅考虑“明⽂中仅包含⼩写字⺟和空格”的情况）

作业
5-2 A triple (x,y,z) of positive integers is called pythagorean,

if x2 + y2 = z2.
Using a list comprehension, define a function

pyths :: Int -> [(Int,Int,Int)]

that maps an integer n to all such triples with
components in [1..n]. For example:

 ghci> pyths 5
 [(3,4,5),(4,3,5)]

5-3 A positive integer is perfect if it equals the sum of all of
its factors, excluding the number itself.
Using a list comprehension, define a function

perfects :: Int -> [Int]

that returns the list of all perfect numbers up to a given
limit. For example:

 ghci> perfects 500
 [6,28,496]

作业

5-4 The scalar product of two lists of integers xs and ys of
length n is give by the sum of the products of the
corresponding integers:

Using a list comprehension, define a function that
returns the scalar product of two lists.

作业

n−1

∑
i=0

(xsi * ysi)

第5章：List Comprehension

Adapted from Graham’s Lecture slides

就到这⾥吧

